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Abstract

In this study, nonlocal boundary value Schrödinger type problem in a Hilbert space with the
self-adjoint operator is investigated. Single step stable second order of accuracy difference
scheme for the numerical solution of this problem is presented. The main theorem on the
stability of this difference scheme is established. Numerical results are given.
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1 Introduction

It is known that various problems in physics lead local and nonlocal boundary value problems to
Schrödinger equations. Methods of solutions of the problems for Schrödinger have been studied
extensively by many researchers (see e.g., [1, 2, 3, 4, 5, 6] and the references given therein). How-
ever, single step second order of accuracy difference scheme for nonlocal problems of Schrödinger
equations have not been well-investigated so far. In the present paper the integral type nonlocal
boundary value problem 

idudt +Au = f(t), 0 < t < T,

u(0) =
T∫
0

α(s)u(s)ds+ ϕ

(1.1)

for Schrödinger problem in a Hilbert space H with the self-adjoint operator A is considered. This
problem was also considered in the article [6]. But in [6], to obtain approximate solution of this
problem, first order accuracy Rothe difference scheme and second order accuracy Crank-Nicholson
difference scheme are considered. On the other hand, in this study, single step stable second order
of accuracy difference scheme for the numerical solution of this problem is presented. The main
theorem on the stability of this difference scheme is established. A procedure of modified Gauss
elimination method is used for solving this difference scheme. The method is illustrated by a
numerical example.

2 A single step stable difference scheme

An integral type nonlocal boundary Schrödinger problem (1.1) is a well-posed problem. This fact
follows from the following theorem.

Theorem 2.1. Assume that ∫ T

0

|α(s)| ds < 1.
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Then there exists a unique solution u(t) of the problem (1.1) and the following inequalities are
satisfied:

max
0≤t≤T

‖u(t)‖H ≤ (1 + Cα)

[
‖ϕ‖H + T max

0≤t≤T
‖f(t)‖H

]
(2.1)

and
max

0≤t≤T
‖u′(t)‖H + max

0≤t≤T
‖Au(t)‖H

≤ (1 + Cα)

[
‖Aϕ‖H + T max

0≤t≤T
‖f ′(t)‖H + ‖f(0)‖H

]
(2.2)

where Cα denotes a positive constant depends on α and not depends on f and ϕ.

Th proof of this theorem is given in [5]. In order to obtain a single step second order stable
difference scheme to obtain an approximate solution for an integral type nonlocal Schrödinger
problem (1.1), we follow the book [7]. First of all let’s state and prove the following auxiliary
lemma.

Lemma 2.2. Let the function v(t), 0 ≤ t ≤ T has a third order continuous derivative and tk−1, tk ∈
[0, T ]. Then the following relation holds.

v(tk)− v(tk−1)− τ

2
v′(tk)− τ

2
v′(tk−1)

= −1

2

∫ tk

tk−1

(tk − s)(s− tk−1)v(3)(s)ds. (2.3)

Proof. Using the formula of integration by parts, we obtain the representation∫ tk

tk−1

w(s)v(3)(s)ds

= (w(s)v′′ − w′(s)v′ + w′′(s)v(s)|tktk−1
−
∫ tk

tk−1

w(3)(s)v(s)ds. (2.4)

If we take w(s) = (tk − s)(s − tk−1)2 then w(tk) = 0, wtk−1 = 0, w′(tk) = −τ , w′tk−1 = τ ,
w′′(tk) = −2, w′tk−1 = −2, and w(3)(s) = 0. If we substitute these results into equation (2.4) and
divide both sides by 6 we obtain the identity (2.3) . q.e.d.

Note that the relation (2.3) is called the Taylor’s decomposition of function v(t) on two points.
Now we wil consider the applications of the Taylor’s decomposition of function on two points. From
(2.3) it is clear that for the approximate solution of the problem (1.1) it is necessary to find v′(tk)
and v′(tk−1). Substituting the expression

v′(t) = iAv(t)− if(t) (2.5)

in (2.3) and neglecting the expression of integral we obtain the single step difference schemes of
second order of accuracy for the solution of equation idudt +Au(t) = f(t). But for the approximation

of integral in the integral type nonlocal boundary condition u(0) =
∫ T

0
α(s)u(s)ds + ϕ, we use
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trapezoidal rule for the approximation of Riemann’s integral since trapezoidal rule gives us a second
order of approximation under smooth data. Hence for the approximate solution of the problem (1.1)
we obtain the single step second order of accuracy difference scheme

iuk−uk−1

τ +A
(
uk+uk−1

2

)
= ϕk,

ϕk = 1
2 (f(tk) + f(tk−1))

tk = kτ, 1 ≤ k ≤ N,Nτ = T,

u0 = τ
2

[
α(0)u(0) + α(T )u(T ) + 2

N−1∑
j=1

α(tj)uj + ϕ

]
(2.6)

generated by Taylor’s decomposition on two points.
Now let us obtain a formula for the solution of (2.6). By induction

uk = Rkξ − iτ
k∑
j=1

Rk−jPϕj , 1 ≤ k ≤ N (2.7)

is the solution of the second order difference scheme

i
uk − uk−1

τ
+A

(
uk + uk−1

2

)
= ϕk, 1 ≤ k ≤ N, u0 = ξ (2.8)

for the approximate solutions of the Cauchy problem

i
du

dt
+Au(t) = f(t), 0 < t < T, u(0) = ξ. (2.9)

Here

R =
(
I + i

τ

2
A
)
P and P =

(
I − i τ

2
A
)−1

. (2.10)

Using formula (2.7) and the condition

u0 =
τ

2

α(0)u(0) + α(T )u(T ) + 2

N−1∑
j=1

α(tj)uj + ϕ

 , (2.11)

we get

u0 = τ
2

[
α(0)ξ + α(T )(RNξ − iτ

∑N
m=1R

N−mPϕm)

+2
N−1∑
j=1

α(tj)
(
Rjξ − iτ

∑j
m=1R

j−mPϕm

)
+ ϕ

]
.

(2.12)

Since the operator

I − τ

2

α(0) + α(T )RN + 2

N−1∑
j=1

α(tj)R
j


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has an inverse, we obtain

ξ = τ
2Tτ

[
−iτα(T )

N∑
m=1

RN−mPϕm)− 2iτ
N−1∑
j=1

∑j
m=1 α(tj)R

j−mPϕm + ϕ

]
(2.13)

where

Tτ =

I − τ

2

α(0) + α(T )RN + 2

N−1∑
j=1

α(tj)R
j

−1

. (2.14)

So, for the solution of problem (2.6), we have the following formula:

uk =



Rkξ − iτ
k∑
j=1

Rk−jPϕj , 1 ≤ k ≤ N,

Tττ
2

[
−iτα(T )

N∑
m=1

RN−mPϕm − 2iτ
N−1∑
j=1

j∑
m=1

α(tj)R
j−mPϕm

+ϕ] , k = 0.

(2.15)

Theorem 2.3. Assume that T max
≤t≤T

|α(t)|H < 1, then the solution of difference scheme (2.6) sat-

isfies the stability inequality

max
0≤k≤N

‖uk‖H ≤ (Cα + 1)

[
‖ϕ‖H + T max

1≤t≤N
|ϕk|H

]
, (2.16)

where Cα denotes a positive constant depends on α and not depends on τ , ϕ, ϕk.

Proof. Using the estimate
‖R‖H→H ≤ 1, ‖P‖H→H ≤ 1 (2.17)

and the formula (2.7), we can obtain

max
1≤k≤N

‖uk‖H ≤
[
‖u0‖H + T max

1≤t≤N
|ϕk|H

]
. (2.18)

Using the spectral representation of self-adjoint operators one can establish

‖Tτ‖H→H ≤ Cα. (2.19)

Namely,
‖Tτ‖H→H

≤ sup
−∞≤µ≤∞

∣∣∣∣∣∣
(

1− τ
2

(
α(0) + α(T )RN + 2

N−1∑
j=1

α(tj)R
j

))−1
∣∣∣∣∣∣

(2.20)
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≤ sup
−∞≤µ≤∞

∣∣∣∣∣∣∣∣∣∣
1

1− τ
2

∣∣∣∣∣α(0) + α(T )RN + 2
N−1∑
j=1

α(tj)Rj

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
(2.21)

Since

τ

3

∣∣∣∣∣∣α(0) + α(T )RN + 2

N−1∑
j=1

α(tj)R
j

∣∣∣∣∣∣ (2.22)

≤ τ

2

|α(0)|H + |α(T )|H + 2

N−1∑
j=1

|α(tj)|H

 (2.23)

≤ τ

2
2N max

0≤t≤T
|α(t)|H = T max

0≤t≤T
|α(t)|H < 1, (2.24)

we have that
‖Tτ‖H→H ≤ Cα. (2.25)

Then using formula (2.13), the triangle inequality and estimates (2.17) and (2.19) the following
estimate is obtained:

‖u0‖H ≤ Cα
[
T max

1≤k≤N
‖ϕk‖+ ‖ϕ‖

]
. (2.26)

Estimate (2.16) follows from (2.18) and (2.26). q.e.d.

3 Numerical analysis

In this section, the numerical solutions of the integral type nonlocal boundary value

i∂u(t,x)
∂t − ∂2u(t,x)

∂x2 + u(t, x) = exp(itπ2) sinπx, 0 < t, x < 1,

u(0, x) = 1
10

1∫
0

u(s, x)ds+ ϕ(x),

ϕ(x) =
[
− 1

10iπ2

(
exp iπ2 − 1

)
+ 1
]

sinπx, 0 ≤ x ≤ 1,

u(t, 0) = u(t, 1) = 0, 0 ≤ t ≤ 1

(3.1)

Schrödinger problem by using difference scheme (2.6) is investigated. The exact solution of this
problem is

u (t, x) = exp(itπ2) sinπx.

For the approximate solution of problem (3.1), the set [0, 1]τ × [0, 1]h of a family of grid points
depending on the small parameters τ and h

[0, 1]τ × [0, 1]h = {(tk, xn) : tk = kτ, 1 ≤ k ≤ N − 1, Nτ = 1,

xn = nh, 1 ≤ n ≤M − 1,Mh = 1}
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is defined. Applying (2.6) for the approximate solution of the problem (3.1), we get the following
single step second order of accuracy difference scheme

i
ukn−u

k−1
n

τ + 1
2

(
−u

k
n+1−2ukn+ukn−1

h2 + ukn −
uk−1
n+1−2uk−1

n +uk−1
n−1

h2 + uk−1
n

)
= f(tk, xn), 1 ≤ k ≤ N − 1, 1 ≤ n ≤M − 1,

f(tk, xn) = 1
2

(
exp(itkπ

2) sinπxn + 1
3 exp(itk−1π

2)
)

sinπxn

u0
n = τ

20

[
u0
n + uMn + 2

N−1∑
j=1

ujn

]
+ ϕ(xn), 1 ≤ n ≤M − 1,

uk0 = 0, ukM = 0, 0 ≤ k ≤ N.

(3.2)

So we have (M + 1)× (M + 1) system of linear equations which can be written in the matrix form
as:  A Un+1 +BUn + CUn−1 = Dϕn, 1 ≤ n ≤M − 1,

U0 = 0, UM = 0,
(3.3)

where

ϕn =


ϕ0
n

ϕ1
n

...
ϕNn


(N+1)×1

, ϕkn =


[
− 1

10iπ2 (exp iπ2 − 1) + 1
]

(sinπxn) , k = 0,

f(tk, xn), 1 ≤ k ≤ N,

A(i, i) = A(i, i+ 1) = a, B(i, i) = b, B(i, i+ 1) = c for any 1 ≤ i ≤ N and B(N + 1, 1) = 1− τ/20,
B(N + 1, N + 1) = −τ/20, B(N + 1, i) = −τ/20 for any 2 ≤ i ≤ N and the other entries for the
matrices A, B are all zero. The matrix D is an identity matrix of order N + 1 and the matrix C is
equal to the matrix A. In these matrices entries are given as:

a = − 1

2h2
, b = − i

τ
+

1

h2
+

1

2
, c =

i

τ
+

1

h2
+

1

2
,

Us =


U0
s

U1
s

...
UN−1
s

UNs

 , s = n− 1, n, n+ 1.

Thus, we have the single step second order difference equations with respect to n with matrix
coefficients. To solve these difference equation we have applied the same modified Gauss elimination
method as in [6] for the difference equation with respect to n with matrix coefficients. Hence, we
seek a solution of the matrix in the following form

Un = αn+1Un+1 + βn+1, n = M − 2, ..., 2, 1, 0, (3.4)
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where αj (j = 1, ...,M) are (N + 1)× (N + 1) square matrices and βj (j = 1, ...,M) are (N + 1)× 1
column matrices. defined by

αn+1 = − (B + Cαn)
−1
A, βn+1 = (B + Cαn)

−1
(Dϕn − Cβn) , (3.5)

n = 1, 2, 3, · · ·,M − 1.
Then using formulas (3.4) and (3.1), we can compute Un, 0 ≤ n ≤M .
For their comparison, the errors computed by

E = max
1≤k≤N
1≤n≤M

∣∣u(tk, xn)− ukn
∣∣ .

Tables 1 gives the error analysis between the exact solution and the solutions derived by difference
schemes. Table 1 is constructed for N = M = 20, 40, 80 and 160 respectively.

.

Table 1
Comparison of the errors for the approximate solution of problem (3.1).

Method N=M=20 N=M=40 N=M=80 N=M=160

Single Step Second Order 0.1378 0.0360 0.0091 0.0023
Crack-Nicholson 0.1569 0.0410 0.0104 0.0026

Second, for their comparison, the relative errors are computed by

relEMN = max
1≤k≤N

EMN(
M∑
n=1
|u(tk, xn)|2 h

) 1
2

and the Table 2 is constructed for N = M = 20, 40, 80 and 160 respectively.

.

Table 2
Comparison of the relative errors for the approximate solution of problem (3.1).

Method N=M=20 N=M=40 N=M=80 N=M=160

Single Step Second Order 0.1949 0.0509 0.0129 0.0033
Crack-Nicholson 0.2218 0.0579 0.0147 0.0037
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In this research, to obtain an approximate solution for an integral type nonlocal boundary value
Schrödinger problem, a single step stable second order difference scheme is established. The stability
of this difference scheme is proved. Even if this difference scheme is easy to implement, it is seen
from the tables that it gives same good approximation with Crank-Nicholson difference scheme for
integral type nonlocal boundary Schrödinger problem.
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